Prediction of Status Patterns of Wind Turbines: A Data-Mining Approach
نویسندگان
چکیده
This paper presents the application of data-mining techniques for identification and prediction of status patterns in wind turbines. Early prediction of status patterns benefits turbine maintenance by indicating the deterioration of components. An association rule mining algorithm is used to identify frequent status patterns of turbine components and systems that are in turn predicted using historical wind turbine data. The status patterns are predicted at six time periods spaced at 10 min intervals. The prediction models are generated by five data-mining algorithms. The random forest algorithm has produced the best prediction results. The prediction results are used to develop a component performance monitoring scheme. DOI: 10.1115/1.4003188
منابع مشابه
Fault Monitoring of Wind Turbine Generator Brushes: A Data-Mining Approach
Components of wind turbines are subjected to asymmetric loads caused by variable wind conditions. Carbon brushes are critical components of the wind turbine generator. Adequately maintaining and detecting abnormalities in the carbon brushes early is essential for proper turbine performance. In this paper, data-mining algorithms are applied for early prediction of carbon brush faults. Predicting...
متن کاملVirtual Wind Speed Sensor for Wind Turbines
A data-driven approach for development of a virtual wind-speed sensor for wind turbines is presented. The virtual wind-speed sensor is built from historical wind-farm data by data-mining algorithms. Four different data-mining algorithms are used to develop models using wind-speed data collected by anemometers of various wind turbines on a wind farm. The computational results produced by differe...
متن کاملPredictive Analysis of Wind Turbine Faults: a Data Mining Approach
Wind industry is expanding rapidly to meet the current energy challenges. The expansion in quantity and size of the wind turbines will also increase the operation and maintenance (O&M) cost. Monitoring the performance of wind turbines can reduce the O&M cost. Supervisory Control and Data Acquisition (SCADA) system records various wind turbine parameters that can be analyzed for performance moni...
متن کاملAnalyzing bearing faults in wind turbines: A data-mining approach
Bearings are an essential part of turbine generators and gearboxes. Dynamic and unpredictable stress causes the bearings to wear prematurely, leading to increased turbine maintenance costs, and could lead to sudden, expensive turbine breakdowns. Over temperature impacts the performance of turbine bearings. In this paper, data mining is applied to identify bearing faults in wind turbines. Histor...
متن کاملAdvanced Data Mining Approach for Wind Turbines Fault Prediction
Wind turbine operation and maintenance costs depend on the reliability of its components. Thus, a critical task is to detect and isolate faults, as fast as possible, and restore optimal operating conditions in the shortest time. In this paper, a data mining approach is proposed for fault prediction by detecting the faults inception in the wind turbines, in particu lar pitch actuators. The role ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011